首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3861篇
  免费   228篇
  国内免费   704篇
化学   3979篇
晶体学   27篇
力学   21篇
综合类   2篇
数学   2篇
物理学   762篇
  2024年   2篇
  2023年   143篇
  2022年   151篇
  2021年   165篇
  2020年   191篇
  2019年   117篇
  2018年   88篇
  2017年   151篇
  2016年   174篇
  2015年   181篇
  2014年   211篇
  2013年   182篇
  2012年   306篇
  2011年   248篇
  2010年   235篇
  2009年   292篇
  2008年   284篇
  2007年   276篇
  2006年   247篇
  2005年   217篇
  2004年   198篇
  2003年   138篇
  2002年   95篇
  2001年   109篇
  2000年   50篇
  1999年   44篇
  1998年   55篇
  1997年   41篇
  1996年   25篇
  1995年   31篇
  1994年   14篇
  1993年   22篇
  1992年   15篇
  1991年   17篇
  1990年   12篇
  1989年   11篇
  1988年   19篇
  1987年   12篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   1篇
  1982年   6篇
  1979年   1篇
排序方式: 共有4793条查询结果,搜索用时 31 毫秒
1.
Excessive consumption of substances such as food colorants, exposure to doses of metal ions, antibiotic residues and pesticides residues above maximum tolerance limit have a detrimental effect on human health. Hence in detecting these harmful substances, the development of sensitive, selective and convenient analytical tools is an essential step. Graphene and graphene like 2D graphitic carbon nitride have shown great promise in the development of electrochemical sensors for determining the levels of these substances in different samples. In this paper, graphene and graphene like 2D graphitic carbon nitride applications on the determination of various food colorants in foods and drinks such as azo dyes (tartrazine, allura red, amaranth, carmine and sunset yellow); metal ions contaminants, antibiotic and pesticide residues in the environment are reviewed.  相似文献   
2.
Accurate determination of Sarcosine (SAR) in urine with high sensitivity and selectivity is important, because it was recently recommended as a prospective biomarker for prostate cancer (PCa) and significant for the early identification of PCa. In this study, an electrochemical sensor based on Fe3O4 incorporated metal–organic frameworks (MOFs) @molecularly imprinted polymer (MIP) was constructed for SAR detection. Magnetic Fe3O4 nanoparticles embedded zeolitic imidazolate framework-8 (ZIF-8) was used as the support of MIP. MIP provides specific recognition sites for template molecules SAR and MOFs increase the rate of mass transfer and adsorption capacity due to the porous structure. The synthesized super-magnetic Fe3O4@ZIF-8@MIP was self-assembled onto an Au electrode in magnetic field and used as the sensing unit of electrochemical sensor. Cyclic voltammetry was used to monitor the electrochemical behavior, and the binding of SAR resulted in a reduction in the measured current. The results revealed a wide linear range from 1 to 100 pM towards trace SAR determination, with extremely low limit of detection down to 0.4 pM. In conclusion, the Fe3O4@ZIF-8@MIP based sensor provides a selective, sensitive, and convenient method for SAR diagnosis and other cancer marker detection.  相似文献   
3.
DNA release electrochemically stimulated by applying ?10 mV on the modified electrode was studied. The release process was based on the local (interfacial) pH change produced upon H2O2 reduction electrocatalyzed by the immobilized microperoxidase‐11. SiO2 nanoparticles attached to the electrode surface and functionalized with trigonelline and boronic acid species changed their electrical charge from positive to negative upon the interfacial pH change, thus allowing electrostatic adsorption of negatively charged DNA on the positive interface and then its repulsion/release from the negative interface. The loaded/released DNA molecules were labeled with a fluorescent dye to allow easy detection of the released DNA molecules. The important feature of the developed system is the controlled DNA release upon applying very small electrical potential on the modified electrode.  相似文献   
4.
Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5–7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.  相似文献   
5.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   
6.
The application of electrochemical sensors for measurement of concentration of pollutant gases in air in the part-per-billion (109) range is reviewed. Performance-limiting factors, particularly the effects of extremes and of relatively rapid changes in ambient temperature and humidity, are noted. Variations in composition of the electrolyte in the meniscus at the electrode–gas interface and instability of the solid–liquid–gas contact line, causing important variations in current due to background electrode reactions, are deduced and suggested as the reason for the performance limitations. Suggestions are made for mitigation through instrument design.  相似文献   
7.
8.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   
9.
Here we present a novel design of electrochemical signal enhancer to increase the detection sensitivity of electrochemical DNA biosensors. The key element of this enhancer is a lysine‐rich peptide (LRP). Its C‐terminal is conjugated with a planer molecule, being able to intercalate into the base pairs of probe‐target duplexes. The lysine residues of LRP are covalently linked with electrochemical signal indicators, acting as an assembly of electrochemical signal indicators. Experimental results proved the feasibility of the novel design. We have examined the effects of the numbers of lysine residues and the hybridization conditions on the detection sensitivity. The optimization procedures have led to significant sensitivity enhancement, and the LOD (limit of detection) has been determined to be 1.4 amol. This enhancer demonstrates advantages of easy operation, simple instrumentation, and high exemption from environmental influence.  相似文献   
10.
《Current Applied Physics》2020,20(2):337-343
Radiotherapy for cancer patients requires accurate measurement of the absorbed dose of radiation in a treatment planning step. Various types of radiation detectors are currently utilized for dose measurement. Among them, calorimeters are known to be the most precise detector for measuring absorbed dose, but their on-site application is limited by the large size of the equipment. We developed a miniaturized chip calorimeter for application as a radiation detector. The calorimetric radiation detector was built using micro/nano fabrication techniques, and consists of an SU-8 photoresist absorber and high-sensitivity vanadium oxide (VOx) thermistors. The thermistors had a temperature resolution of 135 μK, and the calorimeter showed a thermal conductance of 11 μW/K. The detector was irradiated with various X-ray dose rates from a linear accelerator, and the absorbed dose to SU-8 was measured. The detector responses showed high linearity with dose rates, demonstrating the feasibility of the radiation detector for practical uses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号